The SHiP Spectrometer Straw Tracker CERN BDF and SHiP Workshop Berlin @Home

Daniel Bick

March 27 2020

Overview

- 1 The Spectrometer Straw Tracker
- 2 Straw Tubes
- 3 Tracker Stations
- 4 SST Mechanics and Designs UHH Design Prototype
- 5 Summary and Outlook

Spectrometer Straw Tracker (SST)

- Reconstruct tracks of charged particles
 - Do tracks correspond to veto and timing detector hits?
 - Do tracks have a common vertex?
 - Does the mother particle point back to the target?

Aims/Requirements

- \bullet Spatial hit resolution of $120\,\mu m$
- Hit efficiency > 99%
- Operated in vacuum
- Minimize multiple scattering

Straw Tubes

Suitable technique

- Ultra-light straw drift detectors
- Straw tubes based on NA62 design with increased length and radius
- Welded Mylar (BoPET) foil
- Produced by JINR Dubna

Wall thickness 36 µm

Coating Au (20 nm), Co (50 nm)

 $\begin{array}{cc} {\rm Diameter} & 2\,{\rm cm} \\ {\rm Length} & 5\,{\rm m} \end{array}$

Operated with Ar/CO₂ @1 bar

 Shorter tube tested in 2017 testbeam: CERN-SHiP-INT-2019-005

Straw Tubes

Suitable technique

- Ultra-light straw drift detectors
- Straw tubes based on NA62 design with increased length and radius
- Welded Mylar (BoPET) foil
- Produced by JINR Dubna

Wall thickness 36 µm

Coating Au (20 nm), Co (50 nm)

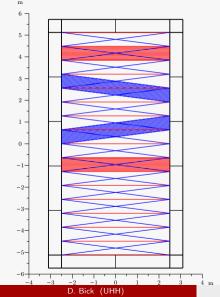
 $\begin{array}{cc} {\rm Diameter} & 2\,{\rm cm} \\ {\rm Length} & 5\,{\rm m} \end{array}$

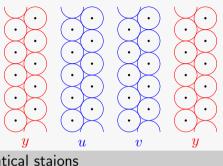
- ullet Operated with Ar/CO₂ @1 bar
- Shorter tube tested in 2017 testbeam: CERN-SHiP-INT-2019-005

But adding more challenges . . .

- Handling of straws
- Flowing of Mylar
- Increase of sagging over time
- Dynamic forces on support frame over time (bending)

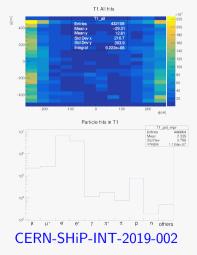
SST Layout


- Located at the end inside the vacuum vessel
- \bullet Aperture: $5 \, \text{m} \times 10 \, \text{m}$
 - width constrained by spatial distribution of muon background
- Large dipole magnet
 - $B_{\rm max} \simeq 0.14\,{\rm T}$ in x-direction
 - Field integral 0.65 Tm
- A pair of tracking stations on each side
- ullet 4 views per station: $y\ u\ v\ y$



Station Design

6 / 24


Four identical staions

- ullet Each station has four views: $y\ u\ v\ y$
- ullet y-views: horizontal straws of 5 m length
- ullet u- and v-views are rotated by a stereo angle \sim 5 $^{\circ}$
- 2 layers per view (depending on final design)
- 16 000 straws altogether

Hit Rates from Simulation

T4 All hits

T5 all hits

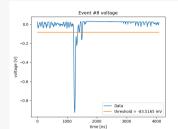

T5 all hits

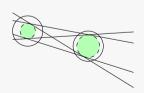
T6 all hits

T6 all hits

T6 all hits

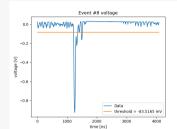
T7 al

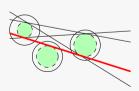

 \circ $\mathcal{O}(10^7)$ hits/station/second


	Max. Rate	Avg. Rate
	kHz/Tube	kHz/Tube
T1	6.68	3.88
T2	1.09	0.63
Т3	1.97	1.05
T4	1.77	1.07

Straw Tube Signals

- \bullet Triggerless readout \to all signal are sent to DAQ
- Offline matching of hits
- ullet Time between t_0 (e.g. from timing detector) and start of signal: drift time
- ⇒ corresponds to drift distance


Precise measurement of t_0

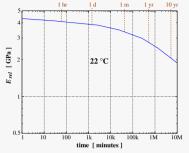

- \bullet Chip development by FZJ \rightarrow see D. Arutinov's talk
- Under investigation: possibility to also use
 - Time over threshold
 - Total charge
 - (Part of the) waveform

Straw Tube Signals

- ullet Triggerless readout o all signal are sent to DAQ
- Offline matching of hits
- ullet Time between t_0 (e.g. from timing detector) and start of signal: drift time
- \Rightarrow corresponds to drift distance

Precise measurement of t_0

- \bullet Chip development by FZJ \rightarrow see D. Arutinov's talk
- Under investigation: possibility to also use
 - Time over threshold
 - Total charge
 - (Part of the) waveform


Mechanical Challenges

Main mechanical challenge:

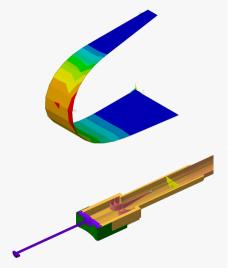
Flowing of Mylar

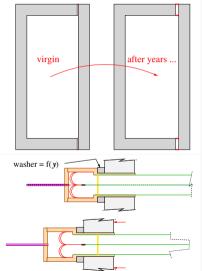
- Reduction of tension to half over 10 years SHiP-INT-2018-001
- Additional forces when vessel is evacuated and straws are under pressure

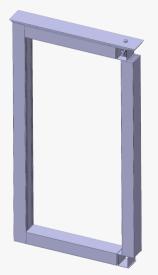
Implications

- Reduced tensions increase gravitational sagging of the straws over time
 - ⇒ changing the eccentricity of the wire
 - ⇒ electrostatic deflections!
- Reduced tensions relax load on any supporting frame, which would thus unbend
- An unbending frame pulls on the wire, which would thus rupture ($\Delta \ell_{\sf max} \simeq 10\,{\sf mm}$)

SST Station Mechanics

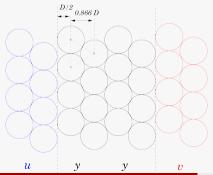

Three alternative designs


- 1) Constant force springs and adjusted pulling
 - Decouple tension of the wire form the straws
 - Increase pulling on the straws over time to compensate for relaxation
- 2 Cemented pack
 - Glue straws together for self-support, thus reducing sagging (boost bending stiffness)
 - No external traction on straws, only overpressure
 - Increase of length due to Mylar creeping within elastic region of the wire
- 3 Suspended bridge design
 - ullet Very stiff frame to minimize unbending when Mylar relaxes o wire is safe
 - Additional carbon fibers to suspend straws, thus defining the sagging



Constant Force Springs + Expandable Frame

Cemented Pack



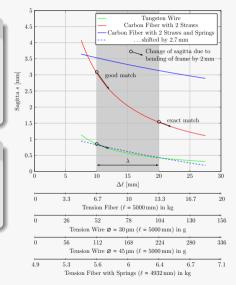
Single straw

Two cemented straws

- Based on PANDA idea
- Straws are glued together for stabilization
- 64 or more straws on top in a a pack form a module
- Only lightweight support structure needed,
 no external traction and thus no forces on frame
- Started to produce small scale (short) prototype

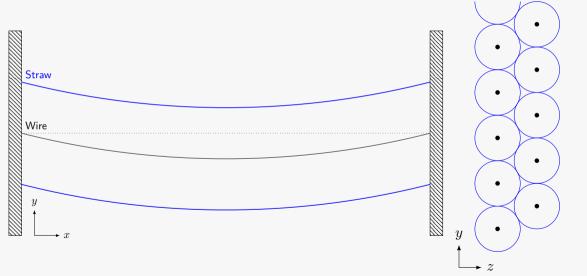
Traction and Elongation

Allowed range of the 5 m wire

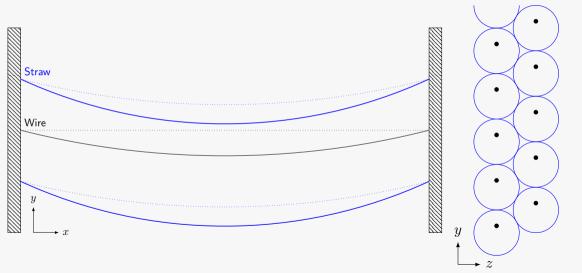

- \bullet for a minimum traction to avoid electrostatic deflections $\Delta\ell_{\rm min}=10\,{\rm mm}$
- ullet elastic limit $\Delta\ell_{\sf max} = 20\,{\sf mm}$
- ullet corresponding sagitta s between 1 mm and 0.5 mm

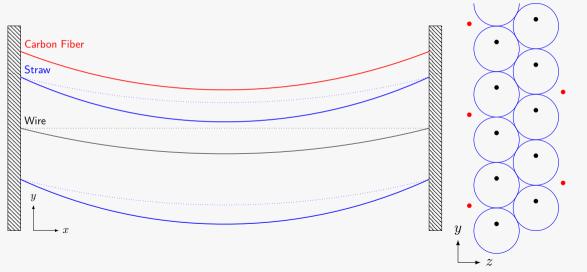
Straw

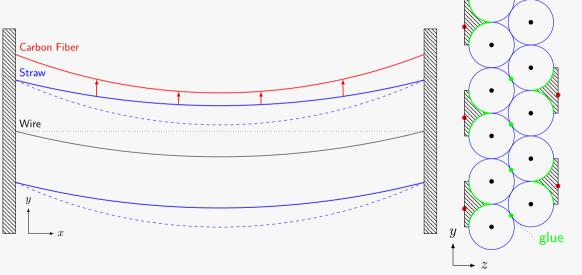
- \bullet for $s=1\,\mathrm{mm},$ straw must be pulled with $10\,\mathrm{kg}$
- this increases to 2 mm when tension halves
- frame unbends and pulls further on wire

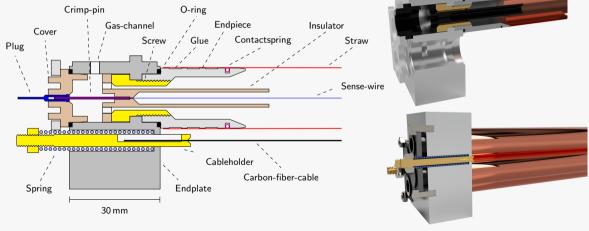

Solution: define sagging of straw by a carbon fiber

One fiber supports two straws

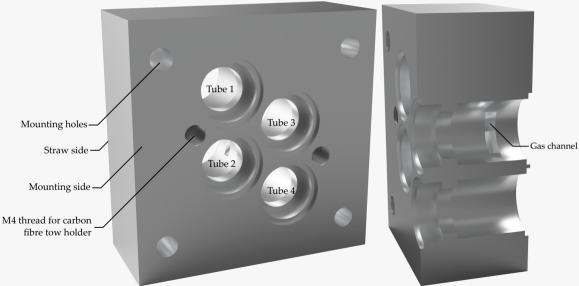


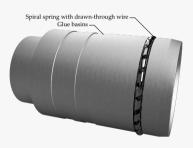


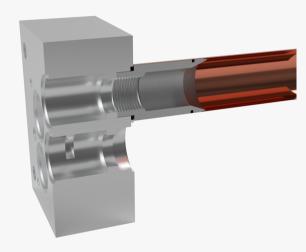


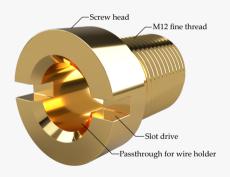


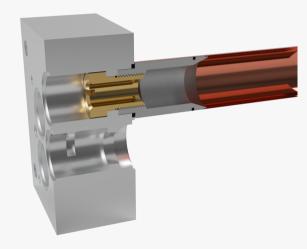
Concept End-Plate

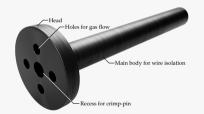

Based on OPERA Experience

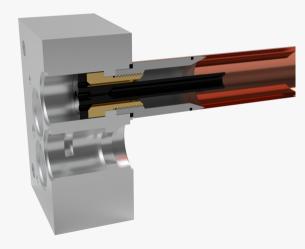

The End Plate

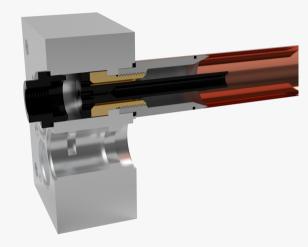


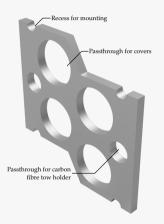


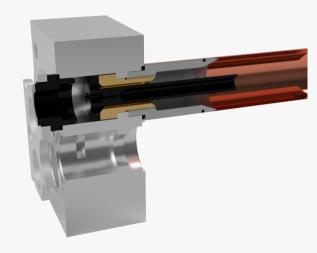


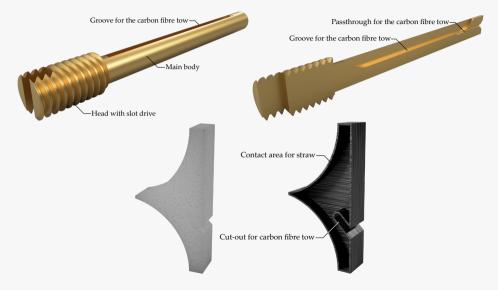






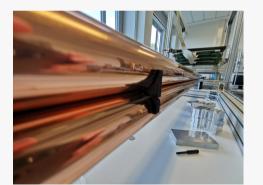






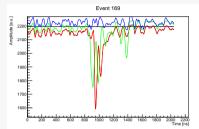
Adding the Suspension

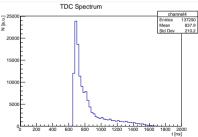
Prototype with Four Tubes



Prototype with Four Tubes

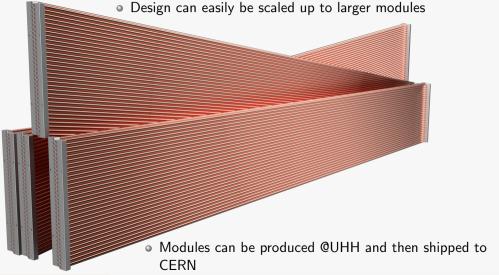
Prototype with Four Tubes





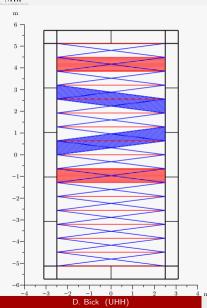
First Functionality

- Two different wire diameters (30 μm and 45 μm)
- Separate HV supply
- Signal amplified by L3 amplifier (used in OPERA)
- Signal readout by multi channel FADC
 - Auto trigger
 - External trigger (scintillators)
- Reference detector (former OPERA test modules)


Future Steps

- Intensive testing with prototype
 - HV, wire diameters, gas, attenuation, . . .
- Study impacts of varying tensions etc.
- Will include a spring to reduce nervousness

Modular Design

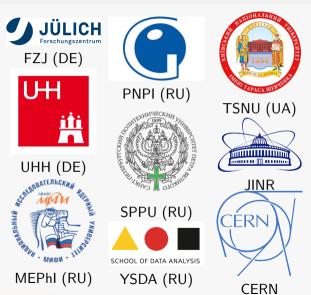


Station Design

- Modules for a stack of 32×2 tube in a view
- Stereo views: shift by one module height over the width
- Module can be mounted from the side into a frame

Active height	$10.25\mathrm{m}$
Active widths	$5.0\mathrm{m}$
Module height	$64\mathrm{cm}$
Straws per module	64
Sequence of 4 stereo views	y- u - v - y
Stereo angle	$127 \mathrm{mrad} = 7.3^{\circ}$
Horizontal modules per view	16
Stereo modules per view	15
Straws per station	3968
Total number of straws	15872

Summary and Outlook



- Technology well suited but mechanics challenging
- Vivid R&D ongoing
- Alternative designs under study
 - converge to one design for TDR
- Working prototype @UHH
 - Concept based on well established technology from NA62 and OPERA
 - First ever working 5 m long prototype now operating in our lab
 - Concept documented in CERN-SHiP-INT-2019-006
 - Next step: design of a 64 strawtube module
- ullet Rough design for a frame exists (more a proof of concept) o further work needed

SST Institutes

