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Speech Acquisition in Noisy Environments SP

■ Speech communication disturbed by external noise sources
Make information more easily accessible by humans and machines
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Speech Communication Devices SP
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Signal Model SP

■ Signal model: ym(t) = sm(t)

■ Conversation disturbed by
■ Reflections from the walls
■ Additive noise

Signal model generalizes many data acquisition challenges
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Signal Model SP

■ Signal model: ym(t) = s(t) ∗ hm(t)
■ Conversation disturbed by

■ Reflections from the walls

■ Additive noise
Signal model generalizes many data acquisition challenges
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Signal Model SP

■ Signal model: ym(t) = s(t) ∗ hm(t) +
∑I

i=1 ni,m(t)
■ Conversation disturbed by

■ Reflections from the walls
■ Additive noise

Signal model generalizes many data acquisition challenges
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Research Methods SP

■ Combine statistical methods, machine learning and domain
knowledge

■ Domain knowledge includes perceptive models, signal production
models, and physical models.

■ Practical constraints must be taken into account
(complexity, storage, latency)

Interdisciplinary exchange necessary
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Overview SP

1. Single Channel Source Separation

2. Variational Autoencoders (VAEs) for Speech Enhancement
Conditional Variational Autoencoder for Speech Enhancement
Speech Enhancement with Stochastic Temporal Convolutional
Networks

3. Nonlinear Multichannel Filtering
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SP

Single Channel Source Separation

David Ditter, Timo Gerkmann. "Influence of Speaker-Specific Parameters on Speech
Separation Systems", ISCA Interspeech, Graz, Austria, Sep. 2019.

David Ditter, Timo Gerkmann, "A Multi-Phase Gammatone Filterbank for Speech
Separation via TasNet", IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Barcelona, Spain, May 2020



Cocktail-Party Problem SP

Speech
Separation

•Video captioning
•Meeting transcription
•Hearing aids
•...

Conditions:
■ Undefined number of speakers
■ Unknown speakers
■ Single microphone

8 T. Gerkmann: Statistical Signal Processing and Machine Learning for Speech Enhancement



Real-Time Demo in Our Lab SP

▶ [1] [2]

[1] D. Ditter and T. Gerkmann, “A Multi-Phase Gammatone Filterbank for Speech Separation Via Tasnet,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020, pp. 36–40.

[2] D. Ditter and T. Gerkmann, “Influence of Speaker-Specific Parameters on Speech Separation Systems,” en, in ISCA Interspeech, Graz,
Austria, Sep. 2019, pp. 4584–4588. [Online]. Available: http://www.isca-speech.org/archive/Interspeech_2019/abstracts/2459.html
(visited on 09/16/2019).
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Problems with Speaker Constellations SP

✔ Shown system[3] shows good average performance
✖ But: Performance varies for certain speaker constellations

−5 0 5 10 15 20
SDR Improvement (dB)

0

200

400

600

N
u

m
b

er
of

re
al

iz
at

io
n

s
same-gender

different-gender

[3] Z. Wang, J. Le Roux, and J. R. Hershey, “Alternative Objective Functions for Deep Clustering,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, Apr. 2018, pp. 686–690.
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Which Speech Parameters are Gender-Specific? SP
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On average, females have shorter vocal tract lengths and higher
fundamental frequencies

■ Vocal tract length: Changes spectral envelope
■ Fundamental frequency: Changes spectral fine structure
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Is it the Pitch or the Vocal Tract Length? SP
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■ Measure performance for speaker pairs as a function of the difference in
pitch and vocal tract length
Fundamental frequency difference ∆f0 is the dominant factor to predict
separation quality[2]

For speaker pairs with close f0, source separation may be harmful
[2] D. Ditter and T. Gerkmann, “Influence of Speaker-Specific Parameters on Speech Separation Systems,” en, in ISCA Interspeech, Graz,

Austria, Sep. 2019, pp. 4584–4588. [Online]. Available: http://www.isca-speech.org/archive/Interspeech_2019/abstracts/2459.html
(visited on 09/16/2019).
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Conv-TasNet Approach SP

Conv-TasNet approach[4] [1]

Encoder x

Speaker
Masks

Encoded
Signal

Mixed
Speech

Speaker
Signals

Separation
Network 

Decoder

■ Encoder and decoder are learned convolutional layers (i.e. filterbanks)
■ Algorithmic latency defined by encoder window size
■ Filterbank windows can be very small (e.g. ≤2 ms)
■ Receptive field around 1 to 2 s

[4] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing Ideal Time–Frequency Magnitude Masking for Speech Separation,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 27, no. 8, pp. 1256–1266, Aug. 2019.

[1] D. Ditter and T. Gerkmann, “A Multi-Phase Gammatone Filterbank for Speech Separation Via Tasnet,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020, pp. 36–40.
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Conv-TasNet Approach SP

Separation Network

■ Separation network is fully convolutional including non-linearites
■ Use of dilated convolutions to enlarge receptive field
■ Use of skip connections for easier training[4]

[4] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing Ideal Time–Frequency Magnitude Masking for Speech Separation,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 27, no. 8, pp. 1256–1266, Aug. 2019.
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Conv-TasNet Approach SP

Learned Filterbank: Key to TasNet’s Success?

Our proposal: Multi-Phase Gammatone Filterbank (MP-GTF)[1] :

Encoder /
Filterbank

N SI-SNRi (dB)

Learned 512 15.4
Learned 128 15.2
MP-GTF 512 15.9
MP-GTF 128 16.1

■ Motivation: Resembles human auditory system and structure of
fully-learned encoder.

✔ Speeds up training time (less parameters)
✔ Slightly outperforms fully learned filterbanks

[1] D. Ditter and T. Gerkmann, “A Multi-Phase Gammatone Filterbank for Speech Separation Via Tasnet,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020, pp. 36–40.

15 T. Gerkmann: Statistical Signal Processing and Machine Learning for Speech Enhancement



Conv-TasNet Approach SP

Learned Filterbank: Key to TasNet’s Success?

Our proposal: Multi-Phase Gammatone Filterbank (MP-GTF)[1] :

Encoder /
Filterbank

N SI-SNRi (dB)

Learned 512 15.4
Learned 128 15.2
MP-GTF 512 15.9
MP-GTF 128 16.1

■ Motivation: Resembles human auditory system and structure of
fully-learned encoder.

✔ Speeds up training time (less parameters)
✔ Slightly outperforms fully learned filterbanks

[1] D. Ditter and T. Gerkmann, “A Multi-Phase Gammatone Filterbank for Speech Separation Via Tasnet,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020, pp. 36–40.

15 T. Gerkmann: Statistical Signal Processing and Machine Learning for Speech Enhancement
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SP

Variational Autoencoders (VAEs) for Speech
Enhancement

Guillaume Carbajal (Ph.D.), Julius Richter (M.Sc), Huajian Fang (M.Sc.)



Contributions SP

1. J. Richter, G. Carbajal, and T. Gerkmann, “Speech Enhancement with Stochastic
Temporal Convolutional Networks,” in Interspeech, Oct. 2020, pp. 4516–4520.

2. H. Fang, G. Carbajal, S. Wermter, and T. Gerkmann, “Variational Autoencoder for
Speech Enhancement with a Noise-Aware Encoder,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Jun. 2021, pp.
676–680.

3. G. Carbajal, J. Richter, and T. Gerkmann, “Guided Variational Autoencoder for
Speech Enhancement with a Supervised Classifier,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Jun. 2021, pp. 681–685.

4. G. Carbajal, J. Richter, and T. Gerkmann, “Disentanglement Learning for Variational
Autoencoders Applied to Audio-Visual Speech Enhancement,” in IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA), Oct. 2021.

5. H. Fang, G. Carbajal, S. Wermter, and T. Gerkmann, “Joint Reduction of Ego-Noise
and Environmental Noise with a Partially-Adaptive Dictionary,” in ITG Conference
on Speech Communication.

17 T. Gerkmann: Statistical Signal Processing and Machine Learning for Speech Enhancement



Speech Enhancement SP

Time-frequency domain: xnf = snf + bnf

Goal: Remove the noise bnf without distorting the clean speech snf

18 T. Gerkmann: Statistical Signal Processing and Machine Learning for Speech Enhancement



Discriminative Vs. Generative Approaches SP

Discriminative
■ Learn p(snf |xnf )
■ Trained on pairs of (xnf , snf )
✖ Generalize to unseen situations

not guaranteed

Generative
■ Learn p(snf )
■ Trained on snf only
✔ Can generalize well to unseen situations

■ vs,nf → variational autoencoder (VAE)
■ vb,nf → nonnegative matrix factorization

(NMF)
19 T. Gerkmann: Statistical Signal Processing and Machine Learning for Speech Enhancement



VAE as Speech Model – Training SP

sn Sampling ~znzn

µφ(sn)

vφ(sn)

j · j2 vθ(zn)

Encoder Decoder

■ Introduce latent variables z ∈ RL to help govern the distribution of the
data s ∈ RF , where often L ≪ F

■ Assume Gaussians for likelihood pθ(s|z) and posterior qϕ(z|s) of z
■ Maximize the Evidence Lower Bound (ELBO)[5]

ELBOθ,ϕ(s) = Eqϕ(z|s)[log pθ(s|z)]︸ ︷︷ ︸
reconstruction accuracy

− DKL(qϕ(z|s)|| N (0, I))︸ ︷︷ ︸
regularization

(1)

[5] D. P. Kingma, M. Welling, et al., “An introduction to variational autoencoders,” Foundations and Trends in Machine Learning, vol. 12,
no. 4, pp. 307–392, 2019. [Online]. Available: https://arxiv.org/abs/1906.02691.
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VAE-NMF Framework – Test[6] SP

VAE
(speech)

jxnj2 ~zn

µφ

vφ

bvs;n

Eφ(·) Dθ(·)

NMF
(noise)

W ×
H

= bvb;n

■ Noisy speech as input to VAE
■ Noise variance estimate: Nonnegative Matrix Factorization (NMF)
■ Joint estimation of speech and noise PSD using Monte Carlo

Expectation Maximization (MCEM)
✖ VAE encoder remains sensitive to noise

[6] S. Leglaive, L. Girin, and R. Horaud, “A variance modeling framework based on variational autoencoders for speech enhancement,” in
MLSP, Sep. 2018, pp. 1–6.
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SP

Conditional Variational Autoencoder
for Speech Enhancement
G. Carbajal, J. Richter, and T. Gerkmann, “Guided Variational Autoencoder for
Speech Enhancement with a Supervised Classifier,” in ICASSP, Jun. 2021, pp.
681–685.
G. Carbajal, J. Richter, and T. Gerkmann, “Disentanglement Learning for Variational
Autoencoders Applied to Audio-Visual Speech Enhancement,” in WASPAA, Oct.
2021, accepted.



Audio-Visual Speech enhancement SP

■ Advantage: visual data v not affected by the noisy acoustic environment
■ Goals:

■ Remove the noise bnf without distorting the clean speech snf
■ Integrate visual data v as additional information
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Proposed: Visual VAD for CVAE SP

■ Problem: In noise-only, VAE tries to reconstruct speech
✔ Voice activity yn can be detected by a supervised︸ ︷︷ ︸

=learns p(y|v)

visual-only classifier Cv [7]

✔ visual-only voice activity detection (VAD) robust to acoustic noise
[7] I. Ariav and I. Cohen, “An End-to-End Multimodal Voice Activity Detection Using WaveNet Encoder and Residual Networks,”, vol. 13,

no. 2, pp. 265–274, May 2019.
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CVAE – Limitations SP

Noisy speech x Clean speech s CVAE

✖ CVAE still outputs signal when ŷn = 0
Explanation:

✖ As DNN only sees clean speech in training ▶ does not learn role of y
−→ latent variable zn already contains information of yn

✖ ELBO does not guarantee disentanglement︸ ︷︷ ︸
= independence

between zn and yn

of zn and yn

25 T. Gerkmann: Statistical Signal Processing and Machine Learning for Speech Enhancement



Proposed Approach: Disentangled CVAE SP

Adversarial training[8] [9]

✔ Discriminator δψ(·) estimates yn from latent variable zn

✔ Adversarial-encoder Eϕ,z(·) makes discriminator δψ(·) unable to estimate yn
−→ maximize entropy

[8] G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. Denoyer, and M. Ranzato, “Fader networks: Manipulating images by sliding
attributes,” in 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017, pp. 5969–5978.

[9] G. Carbajal, J. Richter, and T. Gerkmann, “Disentanglement learning for variational autoencoders applied to audio-visual speech
enhancement,” Proc. WASPAA 2021, Oct. 2021.
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Results With VAE-NMF Framework SP

Noisy speech x Clean speech s

VAE CVAE DCVAE
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SP

Speech Enhancement with Stochastic Temporal
Convolutional Networks (STCNs)
J. Richter, G. Carbajal, and T. Gerkmann, “Speech Enhancement with Stochastic
Temporal Convolutional Networks,” in Interspeech, Oct. 2020, pp. 4516–4520.



Speech Enhancement with STCNs SP

STCN model architecture

✖ Until now: no modeling of temporal dependencies
Employ a stochastic temporal convolutional network (STCN)[10] [11]
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[10] E. Aksan and O. Hilliges, “Stcn: Stochastic temporal convolutional networks,” in International Conference on Learning
Representations, 2018.

[11] J. Richter, G. Carbajal, and T. Gerkmann, “Speech enhancement with stochastic temporal convolutional networks,” Proc. Interspeech
2020, pp. 4516–4520, 2020.
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Speech Enhancement with STCNs SP
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Conclusion: Modeling temporal dependencies → more robust VAE
https://uhh.de/inf-sp-stcn2020
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SP

Nonlinear Multichannel Filtering

Kristina Tesch, Timo Gerkmann, "Nonlinear Spatial Filtering in Multichannel Speech

Enhancement", IEEE/ACM Trans. Audio, Speech, Language Proc., Vol. 29, pp.

1795-1805, 2021.



Traditional Multichannel Speech Enhancement SP

T spatial T spectral

Y⃗ = d⃗S + N⃗

enhanced
speech

speech source

E
Enoise

TMVDR(Y⃗ ) = d⃗H Φ⃗−1
n Y⃗

d⃗H Φ⃗−1
n d⃗

Minimum variance distortionless
response (MVDR) beamformer
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MVDR As Sufficient Statistic SP

The MVDR beamformer TMVDR is a sufficient statistic in the Bayesian
sense if

pS(s|⃗y) = pS(s|TMVDR(y⃗))

holds for every observation y⃗ and every prior distribution of S .

✔ Holds under a Gaussian noise assumption
All information about S is retained in the output of the MVDR
Separation of linear spatial filter and postfilter is optimal in the MMSE
and MAP sense
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Joint Spatial-spectral Nonlinear MMSE Solution SP

Model the noise distribution by a multivariate complex Gaussian mixture,
i.e., N⃗ ∼

∑M
m=1 cmNC(0, Φ⃗m).[12] [13]

TMMSE(y⃗) = ν

∑M
m=1

cmQ̃m
|Φ⃗m |

exp
{

−y⃗H Φ⃗−1
m y⃗

}
T (m)

MVDR(y⃗)Mn

[
T (m)

MVDR(y⃗)
]

∑M
m=1

cmQm
|Φ⃗m |

exp
{

−y⃗H Φ⃗−1
m y⃗

}
Md

[
T (m)

MVDR(y⃗)
]

■ T (m)
MVDR(y⃗) = d⃗H Φ⃗−1

m y⃗
d⃗H Φ⃗−1

m d⃗
■ Mn,Md related to confluent hypergeometric function

■ Q̃m and Qm are functions of d⃗, Φ⃗m, ν and σ2
s

Cannot be decomposed into a linear spatial filter and postfilter
■ Dependency on the summation index m
■ Quadratic term y⃗H Φ⃗−1

m y⃗

[12] R. C. Hendriks, R. Heusdens, U. Kjems, and J. Jensen, “On Optimal Multichannel Mean-Squared Error Estimators for Speech
Enhancement,” IEEE Signal Processing Letters, vol. 16, pp. 885–888, 2009.

[13] K. Tesch and T. Gerkmann, “Nonlinear spatial filtering in multichannel speech enhancement,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 29, pp. 1795–1805, 2021.
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34 T. Gerkmann: Statistical Signal Processing and Machine Learning for Speech Enhancement
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[13] K. Tesch and T. Gerkmann, “Nonlinear spatial filtering in multichannel speech enhancement,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 29, pp. 1795–1805, 2021.
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Research Questions SP

TMVDR T spectral

Y⃗ = d⃗S + N⃗

enhanced
speech

speech source

E
Enoise

Should we replace the traditional approach with DNNs?
■ How much can we gain from a joint spatial-spectral nonlinear filter?
■ Where does the benefit of using a nonlinear spatial filter come from?

35 T. Gerkmann: Statistical Signal Processing and Machine Learning for Speech Enhancement



Research Questions SP

TMVDR T spectral

Joint spatial-spectral

nonlinear filter (TMMSE)

Y⃗ = d⃗S + N⃗

enhanced
speech

speech source

E
Enoise

Should we replace the traditional approach with DNNs?
■ How much can we gain from a joint spatial-spectral nonlinear filter?
■ Where does the benefit of using a nonlinear spatial filter come from?

35 T. Gerkmann: Statistical Signal Processing and Machine Learning for Speech Enhancement



Analysis Based On Statistical Estimators SP

TMMSE TMVDR TSC-MMSE

TMVDR-MMSE

■ MMSE optimal[12] joint spatial
and spectral nonlinear processing

■ MVDR beamformer combined
with single channel MMSE
estimator

■ Derivation based on same
assumptions[13]

[12] R. C. Hendriks, R. Heusdens, U. Kjems, and J. Jensen, “On Optimal Multichannel Mean-Squared Error Estimators for Speech
Enhancement,” IEEE Signal Processing Letters, vol. 16, pp. 885–888, 2009.

[13] K. Tesch and T. Gerkmann, “Nonlinear spatial filtering in multichannel speech enhancement,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 29, pp. 1795–1805, 2021.
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Spectral Characteristics: Heavy-tailed Noise[14] [13] SP

Complex Gaussian mixture distribution modelling diffuse noise
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Nonlinear filter improves upon the performance of the combined filter if
noise is more heavy-tailed than a Gaussian

[14] K. Tesch, R. Rehr, and T. Gerkmann, “On Nonlinear Spatial Filtering in Multichannel Speech Enhancement,” in Interspeech 2019,
Graz, Austria, 2019, pp. 91–95.
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Speech, and Language Processing, vol. 29, pp. 1795–1805, 2021.
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Real-world Noise Data (CHiME-3)[14] SP

Gaussian mixture distribution estimated with EM algorithm applied to segments

■ Results for the cafeteria noise
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Spatial Characteristics: Directional Interferences SP

Inhomogeneous noise field created by five interfering speakers[tesch2020inhomogeneous]
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Nonlinear spatial filter is beneficial ∆ POLQA: 0.84 ± 0.04
∆ SI-SDR: 4.63 ± 0.15
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Spatial Characteristics: Directional Interferences SP

Inhomogeneous noise field created by five directional Gaussian noise sources
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Nonlinear spatial filter is beneficial
Future: implementation using DNNs

∆ POLQA: 2.64 ± 0.08
∆ SI-SDR: 9.92 ± 0.30
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Inhomogeneous noise field created by five directional Gaussian noise sources
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Inhomogeneous noise field created by five directional Gaussian noise sources
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SP

Conclusions



Conclusions SP

■ Neural networks are a powerful tool for source separation[1]

■ Variational Autoencoders
■ Elegant tool to combine statistical methods and machine learning
■ Noise robustness can be improved using

■ Conditioning on additional information (e.g. visual)[9]

■ Including temporal modelling[11]

■ Neural networks: great potential also for multi-sensor signal
processing[13]

[1] D. Ditter and T. Gerkmann, “A Multi-Phase Gammatone Filterbank for Speech Separation Via Tasnet,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020, pp. 36–40.

[9] G. Carbajal, J. Richter, and T. Gerkmann, “Disentanglement learning for variational autoencoders applied to audio-visual speech
enhancement,” Proc. WASPAA 2021, Oct. 2021.

[11] J. Richter, G. Carbajal, and T. Gerkmann, “Speech enhancement with stochastic temporal convolutional networks,” Proc. Interspeech
2020, pp. 4516–4520, 2020.

[13] K. Tesch and T. Gerkmann, “Nonlinear spatial filtering in multichannel speech enhancement,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 29, pp. 1795–1805, 2021.
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