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BATSE results showed that a slope of -1.5 fit the distribution
of the brightest bursts, but that there were fewer faint bursts.

We can see the edge’ of the distribution. ASTR 3830: Spring 2004



2704 BATSE Gamma-Ray Bursts

Fluence, 50-300 keV (ergs cm™)

Source: http://gammaray.nsstc.nasa.gov/batse/grb/



BATSE 4B Catalog
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‘ June 13, 2013

July 3, 2013
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Gamma-ray Burst GRB 130603B
Hubble Space Telescope = ACS/WFC3

NASA and ESA STScl-PRC13-29a




GRB 030329/SN 2003dh
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GRBs and Supernovae

Della Valle et al. 2003
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Crashing neutron stars can make gamma-ray burst jets

Magnetic fields

Neutron stars

Masses: 1.5 suns

Diameters: 17 miles (27 km)
Separation: 11 miles (18 km)

Simulation begins 7.4 milliseconds 13.8 milliseconds

Jet-like
magnetic field

Black hole forms
Mass: 2.9 suns
Horizon diameter: 5.6 miles (9 km)

15.3 milliseconds 21.2 milliseconds 26.5 milliseconds

Credit: NASA/AEIZZIB/M, Koppitz and L. Rezzolla

J.M. Lattimer Gamma Ray Burst Lecture




GRB Models
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Milky Way at 408 MHz
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Fig. 2.2. The Sun is at the origin of the Galactic coordinate
system. The directions to the Galactic center and to the North
Galactic Pole (NGP) are indicated and are located at £ = 0°
and b = 0°, and at b = 90°, respectively



Spiral Galaxy M04

Hightage

NASA and The Hubble Heritage Team (STScl/AURA) ® Hubble Space Telescope WFPC2 e STScl-PRC04-04
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Globular Cluster NGC 6093
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Herschel’ s map of the Galaxy
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Now the Galaxy is being covered systematically with spectra
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Map of the Milky Way Galaxy
S

The map has been
using HI velocity data
sec 2.3.1 in S+G

27

Theorists View of Dynamics of Stars in MW

In cold dark matter theories of
structure formation many mergers
have occurred - it takes a VERY long
time for the orbits to 'relax' and thus
there should be dynamical signatures
of the mergers

Only in MW and LMC/SMC is there
any chance to determine the 3-D
distribution of velocities and
positions to constrain such models in
DETAIL.

Look for signs of assembly of MW
galaxy in our stellar halo (and thin/
thick disk)
— Stellar halo is conceivably all
accreted material

— Stellar streams in the solar
neighborhood

H Rix
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Fig.2.20. Rotation curve of the Milky

Way. Inside the “Solar circle”, that is at
R < Ry, the radial velocity is determined
quite accurately using the tangent point
method; the measurements outside have
larger uncertainties
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Fig. 2.12. The number of RR Lyrae stars as a function of dis-
tance, measured in a direction that closely passes the Galactic
center, at £ =0° and b = —8°. If we assume a spherically
symmetric distribution of the RR Lyrae stars, concentrated to-
wards the center, the distance to the Galactic center can be
identified with the maximum of this distribution
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Fig. 3. MS51 at a central frequency of 151 MHz with a bandwidth of 47.7 MHz overlayed onto an optical DSS image. The resolution is 20” and
a robust weighting of —0.5 was used. Here the extended disk is seen clearly. The contours start at 1 mJy/beam and increase by a factor 1.5.
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Fig.4. The integrated flux density of M51 with a power law fit of slope
a = -0.79 £ 0.02. The integrated flux values of 11 + 1.5Jy from Israel

& Mahoney (1990) at 57.5 MHz and 31 + 8 Jy at 26.3 MHz (Viner &
Erickson 1975) are also plotted
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L Wide-Field Radio Image of the
Naval Research Laboratory
Galactic Center
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Fig. 2.34. Left: A VLA wide-field image of the region around  where the red dot marks Sgr A*. Center right: Sgr A West,
the Galactic center, with a large number of sources identified.  as seen in a 6-cm continuum VLA image. Lower right: the
Upper right: a 20 cm continuum VLA image of Sgr A East,  circumnuclear ring in HCN line emission
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Fig. 2.38. Determination of the mass M(r) within a radius r
from Sgr A*, as measured by the radial velocities and proper
motions of stars in the central cluster. Mass estimates obtained
from individual stars (S14, S2, S12) are given by the points
with error bars for small r. The other data points were derived
from the kinematic analysis of the observed proper motions
of the stars, where different methods have been applied. As
can be seen, these methods produce results that are mutu-

ally compatible, so that the mass profile plotted here can be
regarded to be robust. The solid curve is the best-fit model,
representing a point mass of 2.9 x 106 M, plus a star cluster
with a central density of 3.6 x 10° Mg /pc3 (the mass profile
of this star cluster is indicated by the dash-dotted curve). The
dashed curve shows the mass profile of a hypothetical clus-
ter with a very steep profile, n &< ¥, and a central density of
2.2x 10" Mg pc3
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Problems with traditional galaxy classification

Appearance of galaxies is strongly dependent on which
wavelength the observations are made in.

e.d. the nearby galaxy M81

[ K&

X-ray uv Visible Near-IR Far-IR

Note: large change in appearance between the UV and
the near infrared images.

Galaxies look “clumpier’ in the UV, and increasingly smooth
as we go to the visible and longer wavelengths.



How do the arms in spiral galaxies evolve with

time?
Most spiral arms are This could be determined by looking at
found to be trailing. reddening in globular clusters / novae

) globular clusters seen around disk galaxy. amount of
reddening indicated by whether circles are solid or open

allows us to determine which way a spiral galaxy is
Trailing steuctuce Leading steucturee tilted.




What is nature of the arms in spiral arms!?

Do the spiral arms travel at the same speed as the stars? If spiral
arms did,one would predict that the spiral arms in a galaxy would wind up very quickly.

90

50 million years 100 million years

D¥fferaniial rodtalioen: stars nearthe center take less time to orhit the center than those farther
from the center. Differential rotation can create a spiral pattem in the disk in a shorttime.

Prediction: 500 million years Observation: 13,000 million years

The predicted outcome is in contrast to what is observed!



Stars in Spiral Galaxies are on Epicyclic orbits

The motion can be approximately described as the combination of
orbital motion around a disk galaxy and an epicyclic motion in radius:

4\

Epicyclic Motion

Orbital Frequency
Frequency of epicyclic f around Disk Galaxy =

motion = 2TT/K 211/Q
The orbital frequency of a star Q(R) 02 (R) = H]“_ _8_? i i[_’_g_
can be written as follows R \OR (R,0) "
. S dQ?
Meanwhile, the frequency of epicyclic 12 (R,)= (R 4 402
motion K(R) can be written as follows: % dR o

B

The frequency of epicycle motion is very similar to the orbital frequency:

In general,Q <k <2 Q)

Near the solar system, the epicycle frequency K ~ 1.3 Q)
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Figure 3.7 Effective potential @ (upper curve) for a star with angular momentum
L, = 0.595, orbiting in a Plummer potential ®p (lower curve). The scale length ap = 1;
L, is in units of ~/GMap; units for ® and ®cy are GM/ap. The vertical dashed line
marks the guiding center Ry; the star oscillates about R, between inner and outer limiting
radii.

Figure 3.9 Path of the star of Figure 3.7, viewed from above the Galactic plane; the orbit
started with (R = 1.3, ¢ = 0) and (R = 0, R¢ = 0.4574).



r! so vq,l,

L : =TV, const / So lags behind
-2
F . oxr

I
Fgra\-' B Fcf — I
So moves outwards

|
r) so vq,T J

So moves forward
I

TS

Frame rotates with
Guiding center
Frequency

| <

/\ Fgra\-' . Fcf

So pulled inwards

Retrograde Epicycle
frequency K

Guiding center
| DI D

grav
stationary

(in rotating frame)

Center of orbit







Star moves at same

Star moves faster

Star moves slower

Let’s consider snapshots in time where the star completes
an entire epicyclic orbit. Typically a star must complete
70% of a revolution around a galaxy before this happens.
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Resonances can occur to reinforce structure in spiral arms
of galaxies, if the epicyclic frequency of a stellar orbit is
similar to the frequency at which a star orbitting around
the galaxy encounters a spiral arm.

frequency at which orbiting stars
some integer / encounter spiral arms

nK = m(Q Q)

Epicyclic /
Frequency Orbital
S

# of Spiral Arm Frequency of

Orbital
F Stars on Circular
requency of
Spi Orbits
piral Arms

The only integers n for this relation that are interesting are 0, +1, - 1.



Density Wave Theory

What astrophysical processes occur in these spiral density waves

as they rotate around a spiral disk? . .
at inner radii in spiral

galaxies, stars travel
o Toung L, B =tars faster than the spiral
o density wave.

L

Cust lane -
g, » Emission gas and dust lanes

(formed from the metal
behind arme output of the

* i el supernovae explosions)
' . indicate the position of
the high density spiral

density wave

High-density - “See— nebula
gas and dust - "

hot (massive) stars do

X
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- : not travel much beyond
dizk - the spiral density wave

Credit: van der Kruit

; E:pilEi.l_-Eu.I'I'l'l :-':'-_'?- . in which they are
mEtion g formed

Diskigas
nnoticn L.
foath it is only the old (low

the hot stars are somewhat ahead of the gas/ mass) stars that can
dust lane, since there is some time lag between travel far enough to get
when gravitational collapse begins and when the 2head of the spiral wave
stars finally form (i.e., are on the main sequence)



Dynamical Friction |l

v 0 Original traj.
-8 :
m A
b
F = GMm/b?
At = 2blv
MAV, = mAv, = FAt Component parallel to direction of motion

0 = Av,/v = 2GM/bv? = F sin 68/2 backwards

AF 4rag = -MAV = mAv, 0/2

Line of symmetry
= direction of mean pull
= 0/2 back from perp.



Dynamical Friction |
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Computer calculation of the collision and merger of two equal-sized spiral galaxies

The Mice: ground-based image The Mice: Hubble Space Telescope More sophisticated calculation
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Classes of AGN

Radio Emission << L
Luminosity Lines B -
. Broad + Narrow RQ QSO Seyfert 1 LINER 1.9
Racyo 15| & LINER/
Quiet Narrow Only [ NLQSO ] Seyfert 2 Seyfert 2
LR s 10-4 Lopt None || = cceeem | -
Radio Broad + Narrow | RL QSO [QSR] BLRG PRG
Loud "~ Weak lines
Narrow Only | = ---e- NLRG LINERS
Ly 2102 L, Blazar [BL Lac]
None (OVV,HPQ) |  —

RQ-AGN host galaxies are usually: Early type Spirals (often disturbed)

RL-AGN host galaxies are usually: SO or Ellipticals (often with nuclear dust lanes)
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The black hole. The Schwarzschild radius for a
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panticle acceleration,
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UV and optical wavelengths. The high
ionization clouds of the BLR are excited by the
central continuum radiation field.
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Fig. 12.4. Schematic representation of the unified model for radio galaxies and quasars. BLR:
broad line region. CD: core-dominated quasars. LD: lobe-dominated quasars. Figure kindly
provided by R. Athreya.






