Small, but important: Traffic light proposals for
detecting small traffic lights and beyond

Tom Sanitz!?*, Christian Wilms?*, and Simone Frintrop?

! Theo Automotive Systems GmbH, Hamburg, Germany
2 Computer Vision Group, University of Hamburg, Hamburg, Germany
{christian.wilms,simone.frintrop}@uni-hamburg.de

* indicates equal contribution

Abstract. Traffic light detection is a challenging problem in the con-
text of self-driving cars and driver assistance systems. While most exist-
ing systems produce good results on large traffic lights, detecting small
and tiny ones is often overlooked. A key problem here is the inherent
downsampling in CNNs, leading to low-resolution features for detection.
To mitigate this problem, we propose a new traffic light detection sys-
tem, comprising a novel traffic light proposal generator that utilizes find-
ings from general object proposal generation, fine-grained multi-scale fea-
tures, and attention for efficient processing. Moreover, we design a new
detection head for classifying and refining our proposals. We evaluate
our system on three challenging, publicly available datasets and com-
pare it against six methods. The results show substantial improvements
of at least 12.6% on small and tiny traffic lights, as well as strong results
across all sizes of traffic lights.

1 Introduction

Traffic light detection, which involves locating traffic lights and classifying their
state, is an essential task for self-driving cars and driver assistance systems.
Due to the complex nature of urban environments with several intersections,
heavy traffic, and distracting objects, detecting traffic lights is challenging [14].
Moreover, safe driving in such environments is challenging to humans as well,
leading to stress, oversights, and potentially fatal accidents [12]. Hence, support
by driver assistance systems is of great importance in such environments.
Several approaches for traffic light detection were proposed, mostly based on
standard object detectors [3,1,23,20]. However, the detection of traffic lights
appearing small or tiny on the image plane remains a problem. A major rea-
son is the inherent subsampling in CNNs to extract semantically rich features.
Moreover, small and tiny traffic lights are much smaller than objects typically
annotated in object detection datasets like COCO [17]. Hence, standard object
detectors might not be well-suited for the problem of detecting such traffic lights,
as visible in the results in Fig. 1. Despite the difficulties, small and tiny traffic
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Image TL-SSD [20] Ours

Fig. 1: Qualitative results of TL-SSD [20] and our proposed traffic light detection
system, which highlight the weak performance of current systems on small and
tiny traffic lights. The color indicates the assigned traffic light state. Dark blue
denotes the state off, while white denotes missed or misclassified traffic lights.
Arrows highlight traffic lights for better visibility.

lights are essential for safe, efficient, and eco-friendly driving. For instance, de-
tecting traffic lights early, when they are still far away and small or tiny on the
image plane, allows a car to slowly approach a traffic light showing a stop signal.
This reduces noise emission, fuel consumption, and carbon emission [33, 26].
Several directions were proposed to improve the detection of small and tiny
objects in computer vision literature [4]. Prominent directions include tiling ap-
proaches [2,22,31,32], which process sub-images to increase the objects’ rela-
tive size. However, this leads to substantially increased runtimes [32]. Another
direction is a multi-scale feature representation, combing semantically rich, low-
resolution features with high-resolution features lacking high-level semantics [6,
16]. A third direction are object proposal generators to discover small objects [10,
29,19]. Since the latter two directions do not suffer from substantially increased
runtime, we follow them to improve the detection of small and tiny traffic lights.
In this paper, we propose a new traffic light detection system, focusing on
small and tiny traffic lights, while also improving the detection across all sizes
of traffic lights. First, to better localize small and tiny traffic lights, we propose
a new traffic light proposal generator. It utilizes the one-shot paradigm from
object proposal generation [9], introduces an improved multi-scale feature rep-
resentation to create semantically rich features at high resolution, and employs
attention for increased efficiency. To classify and refine the proposals, we adapt
the Faster R-CNN framework [25] utilizing our high-quality proposals and a
new traffic light detection head. Our extensive evaluation on three challenging,
publicly available datasets demonstrates the effectiveness of our approach for
detecting small and tiny traffic lights, as well as traffic lights of all sizes. Across
all three datasets, we outperform all other tested methods and strong baselines.
Overall, our contributions are threefold:

— A novel traffic light detection system focusing on small and tiny traffic lights.

— A new traffic light proposal generator using a multi-scale feature represen-
tation and attention.

— An extensive evaluation on three challenging datasets, outperforming all
other tested methods and strong baselines across all datasets.
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Fig. 2: Overview of our traffic light detection system. First, our novel traffic light
proposal generator creates traffic light proposals (pink boxes) covering possible
traffic light locations. Subsequently, our detection module refines and classifies
each proposal (red/blue boxes).

2 Related Work

Traffic light detection has attracted considerable attention over the last decade.
While early approaches used traditional techniques including color thresholding
or extracting shape information, see [12] for a survey, CNNs have been utilized
recently. Subsequently, we review the most important and relevant approaches
utilizing RGB data only.

Most recent CNN-based traffic light detection approaches extend standard
object detectors like SSD [18], YOLO [24], or Faster R-CNN [25]. For instance,
[20] and [14] improve SSD’s detection quality for small traffic lights by proposing
modified anchors or an additional classifier. Various versions of YOLO are also
adapted for traffic light detection [3,15,27]. To address the challenge of tiny
traffic lights, [3] use a tiling approach, while [27] combine features from various
layers of the network for detection. Finally, Faster R-CNN is commonly utilized
for traffic light detection with adjustments to the anchor boxes [1], backbones [1,
13], color spaces [13], and the classification head [1,23,7].

Apart from approaches based on standard object detectors, few notable ap-
proaches exist. [21] use a fully convolutional approach with a hierarchical per-
pixel classifier. [28] propose a heuristics-based proposal generator to improve the
detection of small traffic lights. Recently, [34] introduced a detection method for
small objects that disentangles the features of different classes and instances,
which is also applied to traffic light detection.

Overall, for the challenging detection of small and tiny traffic lights, most
approaches use variations of standard object detectors or utilize heuristics-based
approaches. In contrast, we propose a new traffic light detection system with a
dedicated traffic light proposal generator that introduces an improved multi-scale
feature representation to create semantically rich features at high resolution as
well as attention for increased efficiency.

3 Method

This section introduces our new traffic light detection system, visualized in Fig. 2.
Given an input image, our novel traffic light proposal generator, described in
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Fig. 3: Detailed view of our traffic light proposal generator. Our extended fea-
ture pyramid network (yellow and violet pyramids) extracts semantically rich
features across all levels/resolutions (Lg to Lgs), yielding a multi-scale feature
pyramid (violet pyramid). For each level, we generate a feature map (large cyan
boxes) and a scale-specific objectness attention map highlighting possible traffic
light locations. Subsequently, we extract windows (possible proposals) at high-
attention locations across the feature pyramid. Finally, a segmentation and a
score are generated per window to create a ranked list of traffic light proposals.

Sec. 3.1, extracts possible traffic light locations. The proposal generator explicitly
addresses the challenging localization of small traffic lights by improving the
resolution of the multi-scale feature representation and utilizes attention for
efficient processing. Subsequently, our traffic light detection module refines the
proposals and assigns them to a traffic light state based on a new traffic light
detection head (see Sec. 3.2). Finally, we discuss the training of our system in
Sec 3.3.

3.1 Traffic Light Proposal Generator

The first stage of our traffic light detection system consists of our novel traffic
light proposal generator, visualized in Fig. 3. It is designed to locate all traf-
fic lights and reduce the search space for the subsequent traffic light detection
module. Similar to recent object proposal generators [9,29,30], we follow the
efficient one-shot approach [9]. Hence, the input image is processed only once by
the backbone network, yielding a feature representation that is further subsam-
pled to create a multi-scale feature pyramid. By extracting fixed-size windows
from the feature pyramid, proposals for objects of different sizes are generated.

However, simply following this approach is insufficient for traffic light de-
tection with many tiny objects. The additional subsampling to create a feature
pyramid on top of the backbone leads to low-resolution feature maps and miss-
ing tiny objects. To circumvent this problem, we use the backbone itself as a
multi-scale feature pyramid, introducing less subsampling. Yet, two issues arise.
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First, the features from early layers of backbones like ResNets [8] are not
semantically rich. To generate a feature pyramid that is semantically rich across
all levels, we employ and extend the Feature Pyramid Network (FPN) [16] as
backbone (yellow and violet pyramids in Fig. 3). The FPN combines a typical
CNN-backbone with top-down and lateral connections to create a semantically
rich representation across all levels (resolutions) of the feature pyramid (violet
pyramid in Fig. 3). In Fig. 3, the levels are denoted by L,, with the downsampling
factor n. We further add a new level to the feature pyramid for tiny objects (Lo
in Fig. 3). This multi-scale feature pyramid serves as the base for our proposal
generator.

The second issue is the large number of possible locations for extracting
windows, i.e., possible traffic light proposals, in our feature pyramid due to
the high resolution. To address this issue, we utilize scale-specific objectness
attention proposed by [29]. The attention maps are learned per feature pyramid
level (scale-specific) and focus the window extraction as well as further processing
on the most relevant areas, omitting the background.

Based on the attention maps, we extract all relevant, i.e., high attention,
windows of size 10 x 10 across all levels of our feature pyramid (small cyan boxes
in Fig. 3). Subsequently, we use the common head structure of [9] to score the
possible proposals and generate a segmentation per proposal. The final result of
the traffic light proposal generator are n traffic light proposals with bounding
box coordinates and a score to process only the most relevant ones.

3.2 Traffic Light Detection Module

To assign the proposals generated by our traffic light proposal generator to the
traffic light states and refine their locations, we apply our traffic light detection
module, which is inspired by the Faster R-CNN architecture [25]. First, we ex-
tract a feature representation of the image utilizing an FPN backbone. Note that
we can share this backbone with the proposal generator.

Given the feature representation of the image and our proposals, we apply
region of interest pooling per proposal, leading to a 7 x 7 feature map per pro-
posal. Subsequently, each proposal is processed by our new traffic light detection
head consisting of four fully-connected layers with 2048 neurons each. Based on
these features, the detection head refines the traffic light location and assigns a
traffic light state or the background label to each proposal.

3.3 Training

This section describes the training of our traffic light detection system. First,
we train our traffic light proposal generator utilizing the annotated data of the
respective dataset, omitting any state information. We follow [9, 29] for defining
the respective loss functions of the attention modules and the head for segment-
ing as well as scoring the traffic light proposals.
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After training the traffic light proposal generator, we utilize it to gener-
ate positive and negative training samples for our traffic light detection mod-
ule. A proposal is regarded as a positive sample if it has an Intersection over
Union (IoU) of at least 0.5 with any annotated traffic light, while proposals with
an IoU below 0.3 are regarded as negative samples. The rest of the training
regime is similar to [25].

4 Experiments

We evaluate our approach on three challenging, publicly available datasets and
compare it to six systems across the different datasets. The datasets are the
Bosch Small Traffic Lights Dataset (BSTLD) [3], the DriveU Traffic Light Da-
taset (DTLD) [5], and the recently published dataset Cityscapes TL++ (CS-
TL) [11]. They consist of 1978 to 40953 images with an average of 2.4 to 6.6
annotated traffic lights per image. All images show traffic scenes captured from
the perspective of the driver and are of high quality. The number of traffic light
states differs between the datasets. While all datasets include the states stop,
warning, and go, DTLD has stop/warning annotated and all datasets include
the states off or unknown. Note that we adapted all systems to the respective
number of traffic light states contained in a dataset.

‘We compare our approach to different methods per dataset due to the limited
availability of results and code as well as varying dataset splits. On BSTLD, we
compare to [3], [23], and the SSD and Faster R-CNN baselines® provided by [3].
For DTLD, we generate the results of [20] with their publicly available system?.
Since no results are publicly available yet on the CS-TL dataset, we compare to
a strong baseline using Faster R-CNN [25] with an FPN backbone [16].

To assess the quality of traffic light detection results, we use the mean Aver-
age Precision (mAP) with an IoU of 0.5 as the main measure, following [1, 23, 15,
34]. For a more detailed analysis, we report state-specific and size-specific results.
While the traffic light states are fixed by the datasets, we define four relative size
ranges, based on the ratio of an annotated traffic light’s area and the image area.
The ranges for relative size a are tiny (a < 0.01%), small (0.01% < a < 0.03%),
medium (0.03% < a < 0.05%), and large (0.05% < a), denoted as mAPr,
mAPg, mAP,,, and mAP;. The ranges are determined such that across all
datasets, each class comprises between 20% and 30% of the annotated traffic
lights. Finally, we also report mAP ,eightea on BSTLD, defined by [3], which
incorporates the distribution of traffic light states in the dataset.

The subsequent sections discuss the quantitative results, selected qualitative
results, and two ablation studies justifying design choices.

4.1 Quantitative Results

The quantitative results on BSTLD (see Tab. 1), DTLD (see Tab. 2), and the
CS-TL dataset (see Tab. 3) all show similar trends. Across all datasets, our

3 Results taken from https://github.com/bosch-ros-pkg/bstld
* https://github.com /julimueller /t1_ssd
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Table 1: Traffic light detection results on the BSTLD test set in terms of mAP,
MAP yeighted, and state-specific mAPs.

System MAP yeighted MAP mAP g0p MAP yarning mAP g, mAP .
YOLO TLD [3] 0.360 - - - - -
HDA [23] 0.530 - - - - -
SSD TLD 3] 0.600 0.410 0.550 0.410 0.680 0.000
Faster R-CNN NAS [3]  0.650 0.430 0.660 0.330 0.710 0.000
Ours 0.710 0.572 0.678 0.855 0.753 0.000

Table 2: Traffic light detection results on the DTLD test set in terms of mAP
and state-specific mAPs.

System mAP mAPi0p mAP s0p /warning MAP warning mAP g mAP o5
TL-SSD [20] 0.329 0.439 0.283 0.167 0.583 0.010
Ours 0.552 0.699 0.564 0.564 0.789 0.142

proposed system outperforms all other methods and baselines in terms of mAP.
Within the datasets, the results for the individual traffic light states vary. One
reason is the imbalance of annotations in the datasets. For instance, on DTLD,
the states stop and go amount to almost 85% of the annotations in the dataset.
Hence, the results for those states are substantially better than for the other
states. Another reason is the intra-class diversity of the states off and unknown.

On BSTLD, the results in Tab. 1 show that our proposed traffic light detec-
tion system outperforms both SSD TLD and Faster R-CNN NAS [3] based on
standard object detectors by 39.5% and 33.0% in terms of mAP. For the state
warning, the improvement is even up to 159%. Similarly, in terms of mAP ycignted,
our system outperforms all other methods by up to 97.2%.

The results on DTLD in Tab. 2 comparing TL-SSD [20] based on a standard
object detector to our proposed system show again a strong improvement across
all traffic light states (+67.8%). On the recently published CS-TL dataset, we
compare to the strong Faster R-CNN+FPN [25, 16] baseline (see Tab. 3). While
across all states, i.e. overall, our traffic light detection system outperforms the
baseline (+1%), the per-state results favor both systems twice.

Table 3: Traffic light detection results on the CS-TL test set in terms of mAP
and state-specific mAPs.

System mAP mAPstop mAPwarm’ng mAPga MAP unknown

Faster R-CNN+FPN [25,16] 0.496 0.645 0.381 0.626 0.332
Ours 0.500 0.638 0.338 0.650 0.375




8 T. Sanitz et al.

Table 4: Size-specific traffic light detection results on the test splits of BSTLD,
DTLD, and the CS-TL dataset. T, S, M, and L denote traffic light size ranges
tiny, small, medium, and large.

Dataset System mAPr mAPs mAPy mAP,,
BSTLD Ours 0.061 0.508 0.518 0.679
DTLD TL-SSD [20} 0.079 0.299 0.331 0.530
Ours 0.286 0.625 0.672 0.674

CS-TL Faster R-CNN+FPN [25,16] 0.207 0.387 0.385 0.608
} Ours 0.233 0.421 0.400 0.531

Image TL-SSD [20] Ours

Fig. 4: Qualitative results of TL-SSD [20] and our proposed traffic light detection
system on the DTLD test set. The color indicates the assigned traffic light state.
Blue denotes the state off, while white denotes missed or misclassified traffic
lights. Arrows highlight traffic lights for better visibility.

Analyzing the detection performance in more detail, Tab. 4 shows the results
for different relative sizes of traffic lights. Across all systems and datasets, the
results on tiny traffic lights are substantially worse compared to the three other
size ranges, with a drop of up to 91%. Note that the traffic light in BSTLD are
smaller, resulting in worse results compared to the other datasets. Due to the lack
of publicly available results and the novel and custom nature of the evaluation,
we can only compare to TL-SSD on DTLD and the Faster R-CNN+FPN baseline
on the CS-TL dataset. On both datasets, we outperform the other methods on
tiny traffic lights in terms of mAPp (+262% and +12.6%). This confirms the
strong performance of our system on such traffic lights. Across the other size
ranges, we also outperform TL-SSD on DTLD by an average of 79.7%. On the
CS-TL dataset, we outperform the strong Faster R-CNN+FPN baseline on small
and medium traffic lights, with a slight drop on larger ones.

Overall, the quantitative results across three datasets show the strong perfor-
mance of our traffic light detection system. Particularly, the size-specific results
indicate the substantially improved detection of small and tiny traffic lights.
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Image Faster R-CNN+FPN Ours

Fig. 5: Qualitative results of the Faster R-CNN+FPN [25,16] baseline and our
proposed traffic light detection system on the CS-TL test set. The color indicates
the assigned traffic light state. Blue denotes the state unknown, while white
denotes missed or misclassified traffic lights. Arrows highlight traffic lights for
better visibility.

4.2 Qualitative Results

The qualitative results in Fig. 4 on DTLD and in Fig. 5 on the CS-TL dataset
support the quantitative results. Comparing the results of TL-SSD and our sys-
tem on DTLD in Fig. 4, it is clearly visible that both systems detect most larger
traffic lights. However, the small and tiny traffic lights are only regularly de-
tected by our system. TL-SSD is only able to detect one smaller traffic light,
while our system detects almost all of them in the presented examples.

Switching to the recently published CS-TL dataset, Fig. 5 shows a comparison
of our results and the strong Faster R-CNN+FPN baseline. The results across
the four images again show a strong performance of both systems on larger
traffic lights, with few exceptions like in the complex example in the final row.
Investigating the results in the first two rows in more detail, it is visible that
despite a rather low scene complexity, only our system is able to consistently
detect smaller traffic lights like the two traffic lights with unknown state (blue) in
the second row. The lower two rows show more complex scenes with several traffic
lights. Despite the complexity, our system again detects most traffic lights and
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Table 5: Traffic light proposal generation re-
sults for three proposal generators on BSTLD
in terms of AR for 1000 and 5000 proposals.

AR@1000 AR@Q5000

Proposal Generator

AttentionMasks?® [29] 0.180 0.180
AttentionMask3® [29,32] 0.390 0.400
Ours 0.390  0.450

Table 6: Traffic light detection
results for three detection heads
on BSTLD in terms of mAP.

Head Structure mAP
2 x 1024 [25] 0.554
4 x 2048 (ours) 0.563
5 x 2048 0.546

outperforms Faster R-CNN-+FPN, especially on smaller instances. Still, some
traffic lights are missed by our system due to low contrast (see last row).

Overall, these results correspond well to the findings in Tab. 4. Our system
shows a stronger performance on small and tiny traffic lights compared to other
systems, while generally accomplishing very good overall results.

4.3 Ablation Studies

This section investigates the choice of the traffic light proposal generator and
the detection head. Both ablation studies were conducted on BSTLD.

Proposal Generator In Sec. 3.1, we proposed a new traffic light proposal
generator for locating possible traffic lights. To show the benefit of our pro-
posal generator, which is explicitly designed to discover small and tiny traffic
lights, we compare it to two variations of AttentionMask [29]. AttentionMask is
a general-purpose object proposal generator designed to discover small objects.
The differences between the variations and our system are the spatial resolution
of the most fine-grained feature map in the feature pyramid and the usage of an
FPN-based backbone (see Sec. 3.1). While the two versions of AttentionMask
utilize a feature map with a downscale factor of 8 (AttentionMaski?® [29]) and
4 (AttentionMask}® [32]) as the base of the feature pyramid, we use a feature
map with downscale factor 2 as a result of the FPN-based backbone. Note that
AttentionMaski?® and AttentionMask}® do not use an FPN-based backbone. The
results in Tab. 5 on BSTLD in terms of Average Recall® (AR) for 1000 and 5000
proposals show that we strongly outperform original AttentionMask with an im-
provement of 150% on AR@5000. Compared to the variation AttentionMask$®,
the improvement is still 12.5%. Therefore, our traffic light proposal generator
based on the extended FPN-based feature pyramid outperforms general-purpose
object proposal generators on the traffic light localization task.

Detection Head The detection head in our traffic light detection module re-
fines the traffic light proposals and assigns them a traffic light state. As discussed

5 Average Recall assesses how many annotated traffic lights are recalled and how
precisely they are located, given a specified number of proposals.
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in Sec. 3.2, our new detection head comprises four fully-connected layers with
2048 neurons each. We compare this design to the detection head of Faster R-
CNN [25], which has two layers with 1024 neurons, and a larger detection head
with five layers and 2048 neurons each. The results in terms of mAP on BSTLD
in Tab. 6 indicate that our new detection head outperforms Faster R-CNN’s de-
tection head (+1.6%) as well as the larger detection head (4+3.1%). Hence, our
detection head is a good choice for the traffic light detection task.

5 Conclusion

In this paper, we addressed the problem of traffic light detection. We specifically
focused on the challenging detection of small and tiny traffic lights, which are
important for safe, efficient, and eco-friendly driving. Our approach consists
of (i) a novel traffic light proposal generator combining the one-shot approach
from object proposal generation with fine-grained multi-scale features as well as
attention, and (ii) a detection module featuring a new traffic light detection head.
The extensive evaluation across three datasets and six methods clearly shows the
strong performance of our novel system on small and tiny traffic lights (at least
+12.6%), as well as a strong overall performance on traffic lights of all sizes.
Thus, our system can improve safe, efficient, and eco-friendly driving.
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