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The supplementary material presents details of AttentionMask as well as further
results and evaluation. Sec. 1 gives additional details about training Attention-
Mask, especially about the selection of ground truth, the loss function used and
different strategies for training the system end-to-end. In Sec. 2 the results of
the evaluation on the MS COCO dataset using bounding box annotations are
given, while in Sec. 3 further quantitative results from the MS COCO dataset
are shown.

1 Training Details

In this section, we give further details on training AttentionMask. Primarily, we
describe the selection of ground truth for the objectness module, the attentional
head, and the segmentation module as well as the loss function used in the
system and the strategies for training the system end-to-end. We also detail the
hyperparameters as well as the solver used in training.

1.1 Selection of Ground Truth

The selection of the ground truth for the scale-specific objectness attention maps
has already been described in the main paper. Therefore, we focus here on the
selection of ground truth for the objectness module, the attentional head, and
the segmentation module.

Similar to [19], we select for the objectness module up to 64 sampled windows
across all scales with an equal distribution of positive and negative samples. A
sample window generated from scale Sn is regarded as positive, if an object is
roughly contained in the window, centered in the window and fits to the scale
Sn. As described in the main paper for the ground truth of the scale-specific
objectness attention maps, an object fits to the scale Sn, if both side lengths of
the object are within 40% to 80% of the sampled window side length of Sn in the
original image. An object is roughly contained in a window, if the center of the
object is within the image. The criterion of an object being centered in a window
is fulfilled, if the distance between the center of the object and the center of the
window is no larger than 10% of the window’s side length in the original image.
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Following [19], sampling negative examples is not applied randomly among all
other windows, but focused on hard negative examples. Thus, either the criterion
on object size or the object being centered is removed.

For the selection of ground truth for the attentional head and the segmenta-
tion module, the subset of up to 32 positive samples selected for the objectness
module is used. Thus, the same criteria as above apply. For the attentional head
the bounding box of the object mask serves as ground truth, to get a rough loca-
tion of the object. For the segmentation module the pixel-precise segmentation
mask is used.

1.2 Loss Function

As described in Sec. 5.2 of the main paper, training AttentionMask consists of
multiple different losses. For training the objectness module (Lobjn), the atten-
tional head (Lah) as well as the segmentation module (Lseg) we use binary cross
entropy loss, similar to [19]. Lah and Lseg are spatially normalized across the
result window, as otherwise the gradients of Lah and Lseg would overrun the
gradient of Lobjn [19]. Thus, given the binary cross entropy loss function as

L(y, y′) = y · − log(σ(y′)) + (1− y) · − log(1− σ(y′)), (1)

with sigmoid function σ, prediction y′ and ground truth y, the three loss func-
tions for one sample are

Lobjn(o, o′) = L(o, o′), (2)

Lah(aah, a
′
ah) =

1

WahHah

Wah,Hah∑
x,y

L(aahx,y
, a′ahx,y

), and (3)

Lseg(s, s′) =
1

WsHs

Ws,Hs∑
x,y

L(sx,y, s
′
x,y). (4)

Here o, aah and s denote the ground truth for objectness, the attentional head
result, and the segmentation mask, while o′, a′ah and s′ denote the outputs of the
different modules accordingly. Wah and Hah as well as Ws and Hs denote the
width and the height of the output of the attentional head and the segmentation
module respectively.

Training the SOAMs of AttentionMask is different from the other three losses,
as the ground truth is significantly imbalanced. For instance, at scale S8 for one
pixel with the label object there exist on average 351 pixels with the label non-
object. As the first row in Tab. 1 indicates, simply applying the binary cross
entropy loss function from Eq. 1 leads to suboptimal performance, despite being
spatially normalized across the scale-specific objectness attention map similar to
Lah and Lseg. Thus, we evaluate two other strategies.

First, we add weights to the binary cross entropy loss function to balance the
inequality between classes. This leads to a weighted binary cross entropy loss
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Table 1: Comparison of loss functions for Latt.

AR@100

simple cross entropy loss (Eq. 1) 0.171
simple cross entropy loss with weight (Eq. 5) 0.253
Eq. 1 with negative sample mining 1 : 3 [23] 0.258

function

Lr,wr
(y, y′) = y · − log(σ(y′)) · r · wr + (1− y) · − log(1− σ(y′)) (5)

that assigns a higher loss in cases where the ground truth y equals 1 while the
prediction y′ is different from 1. r in Eq. 5 denotes the ratio of pixels with label
non-object and label object in the ground truth of a scale-specific objectness
attention map and thus of negative and positive samples. wr is a weight factor,
which we set to 0.5 for best results.

Second, following [23] and as described in the main paper, we use the negative
sample mining strategy and randomly sample 3 non-object pixels for each object
pixel resulting in a set of positive and negative locations S. As loss function
in this case, we use the standard binary cross entropy loss function from Eq. 1
with the spatial normalization. The results of evaluating the two strategies are
presented in Tab. 1 and show the superiority of the negative sample mining
strategy. Thus, the loss function Latt(a, a

′) for a SOAM is

Latt(a, a
′) =

1

|S|
∑

(x,y)∈S

L(ax,y, a
′
x,y), (6)

with a denoting the ground truth scale-specific objectness attention map and a′

the prediction.

Overall, we use a weighted sum of the different loss functions as the overall
loss function from one image with N samples

L(a, o, aah, s, a
′, o′, a′ah, s

′) = watt

M∑
m=0

Lattm(am, a
′
m)+ (7)

1

N

N∑
n=0

(
wobjnLobjn(on, o

′
n) + 1(on)

(
wahLah(aah,n, a

′
ah,n) + wsegLseg(sn, s

′
n)
))
,

with M denoting the number of scales used and thus the number of scale-specific
objectness attention maps generated. 1 denotes the indicator function, implying
that only positive samples for the losses Lah and Lseg add to the overall loss. In
our experiments, we set wobjn = 0.5, wah = 1.25, wseg = 1.25 and, watt = 0.25,
as it gave the best results.
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Table 2: Approaches for sampling windows during training.

AR@100

sample windows using SOAM output 0.252
sample windows using ground truth 0.258

1.3 Training Strategies

For training the system end-to-end, we evaluate two different strategies regarding
the connection between the SOAMs and the selective window sampling module.
In the main paper and in contrast to [23], we do not use the output of the SOAMs
to sample windows in training. Instead, we use the scale-specific objectness at-
tention ground truth as input for the selective window sampling module. This
gives the advantage of immediately training the back of the system (Lobjn, Lah,
and Lseg) with useful examples. Tab. 2 indicates that using this strategy pro-
duces superior results compared to sampling based on the calculated attention
in training. Note that in both cases there is no flow of information backwards
from the selective sliding window module to the SOAMs or the ground truth.
The extra supervision is not needed, as there are no trained parameters between
those modules and the SOAMs have their own ground truth.

1.4 Hyperparameters and Solver

To optimize the combined loss L, we use stochastic gradient descent with an
initial learning rate of 0.0001, however multiplying the learning rate for the layers
learned from scratch with the factor 10. The momentum equals 0.9, the weight
decay 0.00005 and the batch size is 1 since the sampled windows technically form
a batch within an image. We train AttentionMask for 17 epochs.

2 Bounding Box Evaluation

In the main paper, we already presented the evaluation results of Attention-
Mask compared to state-of-the-art class-agnostic object proposal systems based
on pixel-precise masks on the MS COCO dataset. Here, we show the results using
the smallest bounding boxes of the pixel-precise segmentation masks for evalu-
ation, except for BING and EdgeBoxes that directly regress bounding boxes.
Tab. 3 presents the results of BING [6], EdgeBoxes [44], MCG [31], Deep-
MaskZoom [30], SharpMask [30], and FastMask [19] as well as the proposed
AttentionMask8

128, AttentionMask8
192, and AttentionMask16

192 on the first 5000
validation images of MS COCO using bounding boxes. The results for BING [6]
are taken from [17].
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Table 3: Results on MS COCO with bounding box proposals. S, M, L denote
small, medium, large objects.

Method AR@10 AR@100 AR@1k ARS@100 ARM@100 ARL@100 Time

BING [6] 0.037 0.084 0.163 - - - 0.20s
EdgeBoxes [44] 0.074 0.178 0.338 0.017 0.138 0.505 0.31s
MCG [31] 0.101 0.246 0.398 - - - 45s
DeepMaskZoom [30] 0.191 0.378 0.511 0.141 0.493 0.617 1.35s
SharpMask [30] 0.198 0.367 0.490 0.063 0.514 0.674 1.03s
SharpMaskZoom [30] 0.202 0.397 0.533 0.147 0.519 0.648 2.02s
FastMask [19] 0.227 0.430 0.568 0.175 0.549 0.692 0.33s

AttentionMask8
128 0.214 0.426 0.570 0.210 0.508 0.673 0.22s

AttentionMask8
192 0.221 0.435 0.576 0.206 0.512 0.710 0.22s

AttentionMask16
192 0.219 0.425 0.554 0.148 0.542 0.726 0.21s

3 Additional Qualitative Results

Fig. 1, Fig. 2, and Fig. 3 show additional qualitative results from the first 5000
validation images of MS COCO.

Image SharpMaskZoom [30] FastMask [19] AttentionMask8128 Ground Truth

Fig. 1: Qualitative results of SharpMaskZoom [30], FastMask [19] and
AttentionMask8

128 on the MS COCO dataset. The filled colored contours denote
found objects, while not filled red contours denote missed objects.
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Image SharpMaskZoom [30] FastMask [19] AttentionMask8128 Ground Truth

Fig. 2: Qualitative results of SharpMaskZoom [30], FastMask [19] and
AttentionMask8

128 on the MS COCO dataset. The filled colored contours denote
found objects, while not filled red contours denote missed objects.
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Image SharpMaskZoom [30] FastMask [19] AttentionMask8128 Ground Truth

Fig. 3: Qualitative results of SharpMaskZoom [30], FastMask [19] and
AttentionMask8

128 on the MS COCO dataset. The filled colored contours denote
found objects, while not filled red contours denote missed objects.



8 C. Wilms and S. Frintrop

References

For bibliography see the main paper.


